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Endemic (Balkan) nephropathy is a chronic tubulointerstitial

disease frequently accompanied by urothelial cell carcinomas

of the upper urinary tract. This disorder has recently been

linked to exposure to aristolochic acid, a powerful

nephrotoxin and human carcinogen. Following metabolic

activation, aristolochic acid reacts with genomic DNA to form

aristolactam-DNA adducts that generate a unique TP53

mutational spectrum in the urothelium. The aristolactam-DNA

adducts are concentrated in the renal cortex, thus serving

as biomarkers of internal exposure to aristolochic acid.

Here, we present molecular epidemiologic evidence relating

carcinomas of the upper urinary tract to dietary exposure to

aristolochic acid. DNA was extracted from the renal cortex and

urothelial tumor tissue of 67 patients that underwent

nephroureterectomy for carcinomas of the upper urinary tract

and resided in regions of known endemic nephropathy.

Ten patients from nonendemic regions with carcinomas of

the upper urinary tract served as controls. Aristolactam-DNA

adducts were quantified by 32P-postlabeling, the adduct was

confirmed by mass spectrometry, and TP53 mutations in

tumor tissues were identified by chip sequencing. Adducts

were present in 70% of the endemic cohort and in 94% of

patients with specific A:T to T:A mutations in TP53. In contrast,

neither aristolactam-DNA adducts nor specific mutations were

detected in tissues of patients residing in nonendemic

regions. Thus, in genetically susceptible individuals, dietary

exposure to aristolochic acid is causally related to endemic

nephropathy and carcinomas of the upper urinary tract.
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Endemic (Balkan) nephropathy (EN) is a chronic, progressive
tubulointerstitial disease that affects residents of rural
farming villages located along tributaries of the Danube river
in Bosnia and Herzegovina, Bulgaria, Croatia, Romania, and
Serbia.1 An unusual feature of EN is its close association with
urothelial (transitional cell) carcinomas of the renal pelvis
and ureter.2,3 These upper urinary tract cancers (UUCs),
which account for only 5% of all urinary tract cancers
worldwide, are present in B50% of EN cases.3 Both EN and
UUC exhibit a familial but not inherited association,
suggesting the importance of environmental factors as well
as genetic determinants in this disease.4–6

Over the past 50 years, extensive efforts have been made to
elucidate the etiology of EN/UUC.1,5,7 The majority of this
research focused on the role of environmental agents,
including various heavy metals, mycotoxins, trace elements,
and organic chemicals.8,9 These investigations, however, fail
to account fully for the distinctive pathophysiology and
epidemiology of this disease.10

In 1969, Ivić11 proposed a role for chronic Aristolochia
poisoning in the etiology of EN, based on his observation
that seeds from these plants, which grew abundantly in local
wheat fields, comingled with wheat grain during the
harvesting process. Thus, he speculated that human exposure
to a toxic component of Aristolochia seeds could occur
through ingestion of bread prepared with flour derived from
contaminated grain. Ivić11 also demonstrated that, in animal
models, Aristolochia seeds induced nephropathy and sarco-
mas of the skin.

We pursued the astute hypothesis of Ivić,11 stimulated by
reports of end-stage renal disease in a cluster of otherwise
healthy Belgian women who ingested Aristolochia fangchi as
part of a weight-loss regimen.12 This so-called Chinese herbs
nephropathy, later renamed aristolochic acid nephropathy
(AAN), bears striking similarities to EN in terms of its
pathophysiology and association with UUC.13,14 Importantly,
only 5% of the B1800 Belgian women ingesting Aristolochia

http://www.kidney-international.org o r ig ina l a r t i c l e

& 2012 International Society of Nephrology

Received 20 July 2011; revised 9 September 2011; accepted 13

September 2011; published online 9 November 2011

Correspondence: Arthur P. Grollman, Department of Pharmacological

Sciences, Health Sciences Center T8-160, Stony Brook University, Stony Brook,

New York 11794, USA. E-mail: apg@pharm.stonybrook.edu

Kidney International (2012) 81, 559–567 559



herbs over the course of B1 year developed renal disease or
UUC, suggesting a role for genetic susceptibility similar to
that reported for EN.13

Previously, we identified aristolactam (AL)-DNA adducts
in the renal cortex of four patients with EN and in urothelial
tumor tissues of three patients with UUC/EN.15 These
adducts were not detected in patients with UUC who were
living outside the endemic region. Importantly, the muta-
tional profile of the TP53 tumor-suppressor gene in tumors
of patients with EN/UUC was dominated by A:T to T:A
transversions and contained several unique hot spots,16 a
pattern that differed markedly from TP53 mutational profiles
for sporadic cases of UUC reported worldwide.17 Addition-
ally, mutated adenosine residues were located exclusively on
the nontranscribed strand. Thus, this TP53 mutational
‘signature’ represents a highly specific bioindicator for the
carcinogenicity of aristolochic acid (AA).15,16

In this paper, we present molecular and epidemiologic
evidence linking both dietary exposure to AA and TP53
mutational spectra to UUC in residents of the endemic
regions of Bosnia, Croatia, and Serbia. Based on these results,
we propose the use of these sensitive and specific biomarkers
in the diagnosis of AAN and its associated UUC, recently
recognized as a global disease.18,19

RESULTS
Demographics

Of the 97 cases screened, 77 subjects fulfilled our inclusion/
exclusion criteria; these cases were divided into two groups
based on residence histories. The majority (67/77) lived in
endemic regions for at least 20 years (endemic cases), whereas
10 patients were life-long residents of Zagreb, Belgrade, or
other nonendemic sites (nonendemic cases) and, therefore,
unlikely to have been exposed to AA-contaminated bread.
The key demographic features of these groups are summar-
ized in Table 1. The average age of endemic residents at the
time of surgery was 73.4 years whereas subjects from

nonendemic regions were slightly younger with a mean age
of 66 years (P¼ 0.01). Females outnumbered males by a ratio
of 1.5:1 in endemic regions; the comparable ratio in
nonendemic regions was 0.67; this difference was not
statistically significant (P¼ 0.311). Of the tumors, 70% were
localized exclusively in either the renal pelvis or the ureter,
with the majority being found in the renal pelvis. In some
cases, bladder cancer accompanied tumors of the upper
urinary tract. Tumor from one subject was classified as a
(urothelial) carcinoma of the duct of Bellini.

DNA adducts in renal cortex

Deoxyadenosine (dA)-AL lesions were present in the renal
cortex of 47 (70%) of endemic cases, representing 80% of
female subjects and 56% of males (Po0.055; Table 2 and
Figure 1). dA-AL adduct levels averaged two per 108

Table 1 | Study demographics and tumor sites

Endemic cases Nonendemic cases
N 67 10

Primary residence
Bosnia, N (%) 29 (43.2%) 0 (0.00%)
Croatia, N (%) 18 (26.9%) 5 (50.0%)
Serbia, N (%) 20 (29.9%) 5 (50.0%)

Males, N (%) 27 (40.3%) 6 (60.0%)
Females, N (%) 40 (59.7%) 4 (40.0%)
Age, median 73.0 65.5
Age, mean±s.d. 73.5±0.8 66.1±4.4
Age, range 57–89 43–85

Tumor site, %
Renal pelvis 43.3% 60.0%
Ureter 28.4% 10.0%
Renal pelvis and ureter 10.4% 20.0%
Renal pelvis and bladder 4.5% 0.0%
Ureter and bladder 7.5% 10.0%
Renal pelvis, ureter, and bladder 6.0% 0.0%
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Figure 1 |Prevalence of biomarkers of aristolochic acid (AA)
exposure and TP53 mutations in cases of upper urinary tract
cancers (UUCs) from the endemic villages/regions in Bosnia,
Croatia, and Serbia. Aristolactam (AL)-DNA adducts, produced
during intracellular nitroreduction of AA, were measured in renal
cortex by a 32P-postlabeling-polyacrylamide gel electrophoresis
(PAGE) assay.43 Specific mutations in the tumor-suppressor gene
TP53 were identified in UUC samples using p53 AmpliChip
technology. A:T-T:A transversions (A4T) are the dominant TP53
mutations associated with AA exposure in UUC.16 Tumor DNA was
not available for analysis for four cases. Error bars denote 95%
confidence intervals for each value. Cortical adducts and tumor
TP53 mutations were not detected in DNA samples obtained from
nonendemic cases (n¼ 10; data not shown).

Table 2 | Aristolactam-DNA adducts in renal cortex from
endemic cases

Percent with adducts

All subjects (N=67) 70.1%
Males (N=27) 55.6%
Females (N=40) 80.0%
Smokers (N=25) 64.0%
Nonsmokers (N=42) 73.8%
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nucleotides (range 0.2–19.2); deoxyguanosine (dG)-AL
adducts were also detected in two cases. AL-DNA adducts
were not detected in five UUC patients residing in nonen-
demic sites in Serbia; the absence of these lesions in five UUC
subjects residing in nonendemic sites in Croatia was reported
previously.15

Identification of AL-DNA adducts by mass spectrometry

The predominant DNA adduct in the renal cortex detected by
32P-postlabeling techniques was identified by mass spectro-
metry as 7-(deoxyadenosin-N6-yl) AL-I (dA-AL-I). In the
sample analyzed, this lesion was estimated to occur at a
level of 1.5 adducts in 108 nucleotides (Figure 2). The
exquisite sensitivity of the linear ion trap mass spectrometer
permitted acquisition of the product ion spectrum of the
dA-AL-I adduct at the multistage (MS3) scan mode. The
spectrum is in excellent agreement with the spectrum of
the reference standard, confirming the identity of the lesion
as dA-AL-I. The 7-(deoxyadenosin-N6-yl) AL-II (dA-AL-II)
adduct was not detected; the lower limit of detection being
B1 adduct per 109 nucleotides.15

Renal function

Renal function was compromised in the majority of subjects
in this study (Table 3 and Figure 3). The overall prevalence of
chronic kidney disease (CKD; stages X3) in endemic and
nonendemic cases was similar, affecting 84% and 90% of the
subjects, respectively. Severe renal disease (CKD stages 4 and
5) was evident in the endemic cases, affecting 38.8% of the

subjects in this cohort; CKD prevalence was two times higher
in women than in men, a difference of borderline significance
after adjusting for age (P¼ 0.068). In comparison, only 20%
of nonendemic cases were classified as CKD stages 4 and 5.
There was no association between the presence of AL-DNA
adducts and CKD status among subjects from endemic
villages, even after adjusting for age and sex. The estimated
glomerular filtration rate values were within the normal
range for 19% of subjects who tested positive for AL-DNA
adducts.

Both EN and UUC exhibit a strong familial association.
Among subjects living in the endemic regions of Croatia and
Bosnia and Herzegovina, 39% reported a family history
of renal disease (Table 4). Subjects with a positive family
history exhibited more advanced renal disease, such that 39%
of these subjects were classified as stage 5 CKD, compared
with 11% of subjects with no family history of nephropathy
(Table 3; P¼ 0.033).

TP53 mutations in UUC

Tumor tissues were available for TP53 mutational analysis in
63 of the 67 endemic cases and five nonendemic residents.
TP53 mutations were not detected in the latter group.
However, mutations in TP53 were detected in 40% of
subjects from endemic areas (Figure 1), including 33% of the
males and 44% of the females. Details of the TP53 mutational
spectrum for these cases are reported elsewhere.16 The A:T-
T:A transversion mutations, found exclusively on the non-
transcribed strand of TP53, were present in 16/25 (64%) of
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Figure 2 |Mass spectrometric characterization of DNA-aristolactam (AL) adducts in the renal cortex. (a) Reconstructed ion
chromatogram of the liquid chromatography electrospray ionization/multistage mass spectrometry (LC-ESI/MS/MS3) analysis of
deoxyadenosine (dA)-AL adducts. (a) Calf thymus DNA served as the negative control and was spiked with the internal standard [15N3]-dA-
AL-II at a level of 5 adducts per 108 DNA bases and (b) DNA sample from a upper urinary tract cancer (UUC) subject from Croatia, the level of
the [15N3]-dA-AL-II internal standard was 4.2 adducts per 108 DNA bases. The chromatograms for dA-AL-I, dA-AL-II, and [15N3]-dA-AL-II were
reconstructed with the four principal fragment ions observed in the spectra of the multistage (MS3) scan mode. The level of dA-AL-I was
estimated at 1.5 adducts/108 bases (based on total ion counts of dA-AL-I to [15N3]-dA-AL-II total ion counts). (c) The product ion spectra of
the protonated base adduct [BH2]

þ for synthetic dA-AL-I (lower panel) and the DNA adduct found in the human renal cortex (upper panel).
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B Jelaković et al.: Biomarker of environmental exposure to aristolochic acid o r ig ina l a r t i c l e



endemic cases in which TP53 was mutated: this mutation was
more frequent in females (12/16) than in males (4/9) but this
difference was not significant (P¼ 0.2). Notably, AL-DNA
adducts were present in 94% of cases with A:T-T:A
mutations, documenting the intimate association of these
specific biomarkers of exposure and carcinogenic effect.

Agricultural and dietary practices

All but two subjects from the endemic regions reported
cultivating and harvesting their own wheat 20–30 years ago;
at that time, the vast majority (98%) of individuals used
grain from locally grown wheat to prepare bread for their

households (Table 4). Most subjects (86%) distinctly recalled
seeing Aristolochia plants growing in cultivated farm fields.
Thus, the probability is high that subjects from the endemic
regions were exposed to AA in their diet as a contaminant of
flour prepared from locally grown wheat grain.20

Confounding exposure risks

In addition to AA, cigarette smoking, phenacetin abuse,
arsenic, cyclophosphamide, and occupational exposure to
aromatic amines are recognized as risk factors for UUC.21 Of
these potentially confounding factors, only smoking history
was associated with UUC in this study (Table 4). Among
endemic subjects, 37% reported tobacco use, as did 50%
of the nonendemic subjects. There was a marked gender
difference in tobacco use among endemic residents, as 81%
of males in this group were smokers compared with only 8%
of females (Po0.001). Accordingly, smoking can be elimi-
nated as a confounding variable in the etiology of UUC in
women. Notably, among male endemic subjects who tested
negative for both biomarkers, 9/12 (75%) were smokers,
suggesting a possible causal relationship with UUC.

Other risk factors for urothelial cancers are unlikely to
play an etiologic role in this series. Only one endemic subject
gave a history of chronic excessive analgesic use, and there
are no reports of arsenic exposure in the endemic regions.

Table 3 | Characteristics of chronic kidney disease in endemic UUC cases

Chronic kidney disease Stages 0–2 Stage 3 Stage 4 Stage 5

N (%) 11 (16.4%) 30 (44.8%) 14 (20.8%) 12 (17.9%)
Males (N=27) 22.2% 55.6% 11.1% 11.1%
Females (N=40) 12.5% 37.5% 27.5% 22.5%
Adducta (+) subjects (N=47) 19.1% 40.4% 23.4% 17.02%
Adducta (�) subjects (N=20) 10.0% 55.0% 15.0% 20.0%
Smokers (N=25) 24.0% 64.0% 0.0% 12.0%
Nonsmokers (N=42) 11.9% 33.3% 33.3% 21.4%
Family history of renal disease (N=18)b 16.7% 27.8% 16.7% 38.9%
No family history of renal disease (N=28)b 14.3% 50.0% 25.0% 10.7%
Age mean (years), N=67 72.9 72.8 75.0 73.8
Age range 65–85 57–89 69–80 63–80

Abbreviation: UUC, upper-urinary-tract urothelial cell carcinoma.
aAdduct refers to the presence (+) or absence (�) of aristolactam-DNA adducts in renal cortex.
bInformation regarding family history of renal disease was not available for 21 subjects.
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Figure 3 |Distribution of estimated glomerular filtration rate
(eGFR) values, calculated with the Modification of Diet in
Renal Disease (MDRD) formula, among upper urinary tract
cancer (UUC) cases from endemic and nonendemic villages.
Values corresponding to chronic kidney disease (CKD) stages X3
are shaded in yellow. Red lines indicate the mean±s.e.m. of each
cohort.

Table 4 | Risk factors for urothelial malignancies in endemic
cases

Smokersa, % 37.3%
Percent of males who smoked 81.5%
Percent of females who smoked 7.5%

Environmental exposure, %
Cultivated wheat 20–30 years agob 95.7%
Baked bread 20–30 years agob 97.9%
Observed Aristolochia in wheat fields 20–30 years agoc 86.4%

Family history of renal diseased, % 39.1%
aTotal 67 subjects.
bTotal 47 subjects.
cTotal 44 subjects.
dTotal 46 subjects.
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Occupational exposure to carcinogenic aromatic amines
occurs primarily in chemical industries, whereas farming is
the main occupation of endemic residents.

Renal cortical histopathology

The distinctive renal histopathology in EN is characterized
by extensive cortical tubular atrophy and dense interstitial
fibrosis, most prominent in the outer area of the cortex, with
little evidence of inflammation.22 Glomeruli remain well
preserved until late stages of the disease. Of the nine residents
of nonendemic regions, the histopathological features of
eight were inconsistent with EN as defined in the Materials
and Methods, but in one case, a contribution of EN could
not be ruled out. Of the 62 endemic cases, changes were
too advanced (end-stage renal disease) in nine to establish
a definitive histopathological diagnosis. In six cases, the
changes were highly consistent with EN (Figure 4); most
of these cases also displayed fibrosis of the intima and media
of the interlobar arteries. In 39 cases, the criteria for histo-
pathological diagnosis of EN were not satisfied; greatest
reliance being placed on the absence of a gradient of fibrosis,
the most reliable hallmark for EN. In the remaining cases, a
diagnosis of EN could not be excluded because of secon-
dary changes due to severe vascular disease, obstructive and
reflux nephropathy, chronic pyelonephritis, and/or diabetic
nephropathy. Thus, renal histopathology alone in an older
population frequently is insufficient for making a clinical
diagnosis of EN.

DISCUSSION

This study, designed to confirm and extend observations
made in a limited number of patients,15 supports the hypo-
thesis that AA is the causal factor in EN/UUC. Additionally,
we demonstrate, in the context of chronic, low-dose exposure
to AA, that the presence of AL-DNA adducts in the renal
cortex, coupled with TP53 mutational analysis, can serve as a
specific biomarker of effect for AA-induced UUC and as a
robust biomarker of exposure to AA.

AA is classified formally as a human carcinogen, on the
basis of comprehensive and critical reviews of the scientific
literature23,24 that take into consideration established guide-
lines for causality of disease.25 The dA-AL adducts are
regarded as precursors for UUC, provided that a causal
relationship exists.26,27 In this regard, the recently released
National Toxicology Program report concluded that ‘a causal
association between exposure to AA and human cancer is
evidenced by the strength of the association, consistency
across studies, dose-response effects, detection of AA-DNA
adducts in exposed patients, timing of the exposure and
disease and specific mutations in the p53 gene similar to the
AT to TA transversions seen in rodents and rodent cell
cultures exposed to AA.’24 The present study uses a molecular
epidemiologic approach to document the causal relationship
between AA and EN/UUC.

The suggestion that AA is related causally to human
cancer raises important issues concerning the role of this

powerful nephrotoxin and carcinogen in EN/UUC. For
example, is the etiology of EN/UUC similar in all regions
that harbor the disease? How does the timing and degree of
exposure relate to clinical manifestations of disease? Are
other environmental factors, such as ochratoxin A (OTA)
involved as co-carcinogens? Are EN and UUC invariably
linked? Finally, could AL-DNA adducts, in conjunction with
TP53 mutational spectra, be used as prima facie biomarkers
to estimate the incidence and prevalence of AAN, now
recognized as a global disease? The results of our study are
discussed with these questions in mind.

EN was first recognized in the late 1950s as a novel clinical
entity limited to rural farming populations in the Danube
river basin.1,5,7 Remarkably, the disease remains confined to
several hundred settlements in Bosnia, Bulgaria, Croatia,
Romania, and Serbia. By 1970, it became apparent that
patients with EN were at an increased risk of developing
UUC. The present study includes subjects living in or near
54 different endemic villages in the three countries,2 where
past exposure to AA appears to have occurred through
contaminated baking flour.11,20 Indeed, as reported in this
paper, the presence of AL-DNA adducts in 70% of endemic
cases of UUC provides compelling evidence of dietary
exposure to AA.

In our study population, exposure to AA occurred decades
before the clinical diagnosis of UUC was made. The presence
of Aristolochia clematitis in meadows and in cultivated wheat
fields in Croatia was documented in early reports of AAN in
horses28 and confirmed by almost all subjects enrolled in the
present study. The study cohort lived for at least 20 years and,
in most cases, their entire lives in endemic communities
where home-baked bread prepared from locally grown wheat
grain was a dietary staple. Thus, taking into consideration the
long latent period for the development of UUC, residents of
endemic villages likely were exposed to low doses of AA since
the 1920s. In recent years, however, the same individuals now
purchase, for home consumption, flour and bread that is
rarely contaminated with Aristolochia seeds. Predictably, as
dietary exposure to AA diminishes, the average age of
individuals requiring hemodialysis for EN and/or nephrour-
eterectomy for UUC increases, a trend observed in Croatia
and Serbia.2,29,30

OTA, a ubiquitous mycotoxin, has long been hypothesized
to play a primary role in the etiology of EN/UUC.31 Indeed,
residents in endemic regions are exposed to relatively high
concentrations of OTA.32 However, similar high exposure
occurs throughout the world in farming communities that
are largely free of CKD and UUC.33 Thus, solid epidemio-
logic evidence supporting an association between exposure
to OTA and the prevalence of EN or UUC is lacking.
Importantly, acute or chronic nephrotoxicity associated
with dietary exposure to OTA has never been observed in
humans.34 A comprehensive review concluded that ‘pub-
lished epidemiologic studies are inadequate to assess a causal
relationship between OTA and human cancer.’35 Additionally,
putative DNA adducts identified in patients with EN/UUC
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appear to represent products of oxidative DNA damage36,37

or, possibly, covalent modifications of deoxyguanosine.38,39

However, such adducts are unlikely to generate TP53
mutation spectra dominated by A:T-T:A transversions,
as reported here for 64% of endemic cases with mutations
in TP53.

Bulky DNA damage can be detected by the sensitive, but
relatively nonspecific, 32P-postlabeling assay used to quantify
AL-DNA adducts in the renal cortex. In some patients,
particularly smokers, a variety of DNA adducts are present,
thereby complicating the identification of AL-DNA adducts

by thin-layer chromatography.40 In our study, the predomi-
nant dA-AL adduct was identified by demonstrating its
co-migration on polyacrylamide gel electrophoresis with
authentic synthetic standards. In addition, we subjected
renal cortical DNA to multistage tandem mass spectrometric
analysis, providing, for the first time, an unequivocal
chemical identification of dA-AL adducts in renal tissues of
patients from endemic regions with UUC.

The basic pathophysiology of EN/UUC is similar in
almost all respects to that associated with the so-called
Chinese herbs nephropathy, where the amount of AA
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Figure 4 |Histopathology of renal cortex from three upper urinary tract cancer (UUC) subjects with features highly consistent
with endemic (Balkan) nephropathy (EN). Case 1: (a) trichrome- and (b) hematoxylin and eosin (H&E)-stained sections of renal cortex.
(a) Fibrosis is patchy and areas of unaffected tubules are noted in this EN case. Involvement of the labyrinth is evident in this area from a
subcapsular zone, but the gradient of fibrosis can just be appreciated. (b) Moderately advanced EN with substantial tubular atrophy and
extensive interstitial fibrosis. There is little inflammation. Cortical collecting ducts are seen in the upper center field. Glomeruli are relatively
intact. Case 2: (c) trichrome- and (d) H&E-stained sections of renal cortex. (c) Advanced classic EN with relative glomerular preservation,
profound tubular atrophy, and a gradient from superficial (top of image) to deep cortex of extensive interstitial fibrosis. (d) Typical cortex in
advanced EN. The most striking alteration is an almost complete atrophy of proximal tubules. There is almost no inflammation. The
glomeruli are preserved but show ischemic change (simplification and condensation). An arteriole in the bottom of the image shows
nonspecific sclerotic changes. (e) Significant vascular disease involving an interlobular artery is evident in case 3 (H&E). Vasculopathy is
very common in EN and has no distinguishing features. Note the adjacent atrophy of proximal convoluted tubules (arrow). DNA-
aristolactam adducts were detected in renal cortex for all three cases. The estimated glomerular filtration rate (eGFR) values (ml/min
per 1.73m2) were 61 (case 1), 5 (case 2), and 35 (case 3).
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ingested over 13 months was recorded.41 The slower clinical
progression of EN/UUC likely reflects lower levels of dietary
exposure to AA ingested over many years. Thus, based on the
abundant evidence summarized in the National Toxicology
Program24 and the results of the present study, we suggest
that endemic (Balkan) nephropathy be referred to as
aristolochic acid nephropathy, a designation that carries
important connotations for public health authorities in
countries harboring this disease, and removes the stigma
occurring when the name of a disease is associated with
specific countries.42

Despite being linked to a common etiologic agent, the
molecular mechanism of nephrotoxicity in EN/UUC may
differ from that leading to urothelial cancer.43 Thus, although
hepatic detoxification by CYP1A2 (refs. 44, 45) reduces both
the nephrotoxicity and carcinogenicity of AA, expression
of other genes may contribute to the relative susceptibility
of individuals to EN and UUC.6,19 In fact, patients with
mutations in key tumor-suppressor genes and oncogenes are
more likely to manifest changes associated with UUC
whereas symptoms of renal tubular dysfunction predominate
in patients presenting as EN. A subset of our UUC cohort
exhibits the characteristic renal histopathology of EN;
however, in many patients, the pathognomonic gradient of
fibrosis was likely obscured by secondary changes associated
with CKD. This observation underscores the need to utilize
more sensitive parameters for evaluating renal tubular func-
tion, such as low-molecular-weight proteinuria, in evaluating
nephrotoxicity in AA-induced UUC.46

Cross-sectional studies can be used to evaluate DNA
adduct–exposure relationships in populations exposed to
genotoxic agents.26,27 The dose of carcinogen detected in
target tissues as DNA adducts reflects the ‘biologically
effective dose.’47 DNA adduct levels represent integration,
over time, of exposure to the carcinogen, including inter-
individual variation in carcinogen metabolism, DNA repair,
and other host factors. Nevertheless, as genetic factors play a
significant role in conferring susceptibility,6 the presence of
DNA adducts alone is insufficient to predict the development
of EN/UUC.

The sensitivity of AL-DNA adduct analysis as a biomarker
for exposure is enhanced by the active secretion of AA by
the proximal tubule, where the toxin is concentrated
10–20-fold.48 Additionally, dA-AL DNA adducts are resistant
to global genomic nucleotide excision repair, as evidenced
by their exclusive presence on the nontranscribed strand
of DNA.16 As a result, AL-DNA adducts persist in the renal
cortex for many years;13,15 indeed, the last known exposure to
AA for one adduct-positive subject in this study occurred 60
years before developing symptoms of UUC.

Until quite recently, Aristolochia herbal preparations were
widely used in the practice of traditional Chinese herbal
medicine. Indeed, the production of Aristolochia manchur-
iensis alone in China was estimated at 320,000 kg/year.49

Surprisingly, considering the widespread usage of Aristolochia
herbs in certain countries,49–51 only several hundred cases

of AAN worldwide have appeared in the literature (summar-
ized in National Toxicology Program).24 Therefore, we posit
that AAN/UUC represents a long-overlooked disease and
an international public health problem of considerable
magnitude. The prevalence of disease in countries where
Aristolochia sp. have been used for medicinal purposes
over the past 50 years could be estimated by applying the
molecular epidemiologic approach described in this report,
using dA-AL adducts and TP53 mutational spectra as
biomarkers of exposure and carcinogenic effect.

In summary, we provide molecular epidemiologic evi-
dence that strongly supports the hypothesis that, in
genetically susceptible individuals, dietary exposure to AA
is causally related to endemic (Balkan) nephropathy and
to the carcinomas of the upper urinary tract associated with
this disease.

MATERIALS AND METHODS
Subject selection
All studies involving human subjects were approved by the
institutional review boards at Stony Brook University and the
School of Medicine, University of Zagreb. Subjects were selected
from residents of Croatia, Bosnia, and Serbia undergoing nephro-
ureterectomy for UUC. The enrollment criteria were: (1) definitive
diagnosis of urothelial carcinomas of the renal pelvis and/or ureter,
verified by tumor histopathology; (2) known residence history; and
(3) availability of fresh, frozen renal cortical tissue for DNA adduct
analysis.

Clinical samples and medical histories
Blood samples were obtained before surgery. Samples of tumor and
renal cortex obtained following surgery were frozen at �80 1C, and
then used for mutational (tumor) or DNA adduct (renal cortex)
analyses. Additional tissue samples were fixed in formalin and
embedded in paraffin for histopathological evaluation. Information
regarding past health, residency, dietary, and agricultural practices
was acquired by means of a formal questionnaire, personal
interviews, and review of medical records.

Renal function
Serum creatinine levels were measured by the modified Jaffe assay
and used to calculate estimated glomerular filtration rates.52 One
subject was on hemodialysis therapy. The KDOQI (National Kidney
Foundation Kidney Disease Outcomes Quality Initiative) guidelines
were used to classify chronic kidney disease by stages, based on
estimated glomerular filtration rates.53

Molecular biomarkers of exposure
DNA, extracted from renal cortex and tumor tissues, was purified
by standard phenol–chloroform extraction techniques. The level of
AL-DNA adducts in the renal cortex DNA (10–20mg) was determined
using 32P-postlabeling polyacrylamide gel electrophoresis, as pre-
viously described.54 Synthetic oligonucleotides containing known
quantities of dA-AL and dG-AL adducts were used to identify the
position of corresponding adducts on polyacrylamide gels and for
quantification. TP53 mutations in DNA isolated from tumor samples
were identified with the AmpliChip p53 detection algorithm (Roche
Molecular Diagnostics, Pleasanton, CA) that detects all single base-
pair substitutions and single-base deletions in the TP53 gene.16
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Mass spectrometric identification of AL-DNA adducts
Renal cortical DNA (62 mg in 5mmol/l Bis-Tris buffer, pH 7.1) was
digested with DNAse I, nuclease P1, alkaline phosphatase, and
spleen phosphodiesterase for 18 h at 37 1C, followed by solid-phase
extraction of the dA-AL adducts.15 Isotopically labeled [15N3]-dA-
AL-II was employed as an internal standard to estimate the dA-AL-I
and dA-AL-II adduct levels, as both adducts displayed comparable
ionization efficiencies. The internal standard was added to DNA
before enzyme digestion at a level of 4.2 adducts per 108 DNA bases.
Untreated calf thymus DNA served as a negative control.

The chemical identities of dA-AL adducts were determined using
the Velos linear quadrupole ion trap mass spectrometer (Thermo
Fisher Scientific, San Jose, CA) interfaced with an Agilent capillary
1100 series LC system (Palo Alto, CA) for separation of DNA
adducts. Details of the mass spectrometric methods used in this
study have been reported.15

Mass spectrometric analysis was conducted by electrospray ioniza-
tion in the positive ionization mode. The tandem mass spectrometry
scan mode was employed to monitor the loss of deoxyribose from
the protonated DNA adducts [MþH -116]þ . The aglycone adduct
[BH2]

þ underwent fragmentation at the MS3 scan stage to obtain full
product ion spectra. Analysis involved monitoring the following
transitions: dA-AL-I, m/z 543-427-150–500; dA-AL-II, m/z 513-
397-150–500; and [15N3]-dA-AL-II m/z 516-400-150–500.

Renal histopathology
Renal cortex was available for histopathological review in 62/67
UUC cases from the endemic regions and 9/10 cases from
nonendemic sites. Each case was reviewed by two independent
pathologists in a blinded fashion using 2-mm sections stained with
hematoxylin and eosin and Masson’s trichrome. The criteria
required for a positive histopathological diagnosis of EN were the
presence of interstitial fibrosis with a gradient from cortex to
medulla, pronounced tubular atrophy with glomerular preservation,
and relatively little inflammation.
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(eds). Endemic Nephropathy. Institute for Textbook Publishing: Belgrade,
Serbia, 2000, pp 350–439.
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