Faculty / Research

Robert Watson, PhD

Assistant Professor 

 

Ph.D., The University of Iowa

Postdoctorals, The Scripps Research Institute and Stony Brook University

631-444-1574  robert.watson@stonybrook.edu
Insulin-stimulated translocation of the GLUT4 glucose transporter

Li LV, Bakirtzi K, Watson RT, Pessin JE, Kandror K. (2008). The C-terminus of GLUT4 targets the transporter to the perinuclear compartment but not to the insulin-responsive vesicles. Biochem J. (In Press).

Watson RT, Hou JC, Pessin JE. (2008). Recycling of IRAP from the plasma membrane back to the insulin-responsive compartment requires the Q-SNARE syntaxin 6 but not the GGA clathrin adaptors. J Cell Sci 121:1243-1251.

Lodhi I.J., Chiang S.H., Chang L., Vollenweider D., Watson R.T., Inoue M., Pessin J.E., Saltiel A.R. (2007). Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab. 5:59-72.

Hou, J.C., Suzuki, N., Pessin, J.E., and Watson, R.T (2006). A Di-leucine Motif is Required for the GGA-dependent Entry of Newly-synthesized IRAP into the Insulin-responsive GLUT4 Storage Compartment. J Biol Chem. 281:33457-66.

Liu, G., Hou, J.C., Watson, R.T., and Pessin, J.E. (2005). Initial entry of IRAP into the insulin-responsive storage compartment occurs prior to basal or insulin-stimulated plasma membrane recycling. Am J Phyiol: Endocrinology and Metabolism. 289:E746-52.

Khan, A.H., Capilla, E., Hou, J.C., Watson, R.T., Smith, J.R., and Pessin, J.E. (2004). Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop. J Biol Chem 279:37505-11.

Watson, R.T., Khan, A.H., Furukawa, M., Hou, J., Li, L., Kanzaki, M., Okada, S., Kandror, K.V., Pessin, J.E. (2004). Entry of newly-synthesized GLUT4 into the insulin-responsive storage compartment is GGA-dependent. EMBO J. 23:2059-2070.

Shigematsu S., Watson R.T., Khan A.H., Pessin, J.E. (2003).The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J Biol Chem 278:10683-10690.

Watson, R.T., Furukawa, M., Chiang, S.-H., Boeglin, D., Kanzaki, M., Saltiel, A.R., Pessin, J.E. (2003). The exocytotic trafficking of TC10 occurs through both classical and nonclassical secretory transport pathways in 3T3L1 adipocytes. Mol Cell Biol. 23:961-974.

Carey, K.D., Watson, R.T, Pessin J.E., and Stork, P.J.S. (2003). The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J Biol Chem 278:3185-3196.

Kanzaki, M., Watson, R.T., Hou, J.C., Stamnes, M., Saltiel, A.R., Pessin, J.E. (2002). The small GTP binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes. Mol Biol Cell 13:2334-46.

Kanzaki, M., Watson, R.T., Khan, A., Pessin, J. E. (2001). Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes. J Biol Chem 276: 49331-49336.

Watson, R.T., Shigematsu, S., Chiang, S.-Y., Mora, S., Kanzaki, M., Macara, I.G., Saltiel, A.R., Pessin, J.E. (2001). Lipid raft compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 154:829-840.

Watson, R.T. and Pessin, J.E. (2001). Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am J Physiol Cell Physiol 281:C215-C233.

Chiang, S.-H., Baumann, C.A., Kanzaki, M., Thurmond, D.C., Watson, R.T., Neudauer, C.L., Macara, I.A., Pessin, J.E., Saltiel, A.R. (2001). Insulin-stimulated translocation requires the CAP-dependent activation of the small GTP binding protein TC10. Nature 410:944-948.

Watson, R.T. and Pessin, J.E. (2000). Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-Golgi network of 3T3L1 adipocytes. J Biol Chem 275:1261-1268.

Yang, C.M., Watson, R.T., Elmendorf, J.S., Sacks, D.S., Pessin, J.E. (2000). Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphophate in 3T3L1 adipocytes. Mol Endocrinol 14:317-326.

Kanzaki, M., Watson, R.T., Artemyev, N.O., Pessin. J.E. (2000). The trimeric GTP-binding protein (Gq/G11) a subunit is required for insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes. J Biol Chem 275:7167-7175.

Review Articles/Book Chapters

Watson, R.T. and Pessin, J.E. (2009). ‘Glucose’, in The McGraw-Hill Encyclopedia of Science & Technology, 10th Edition.

Watson, RT and Pessin JE (2007). GLUT4 translocation: The last 200 nanometers. Cell Signal. 19:2209-2217.

Watson, R.T. and Pessin, J.E. (2006). Bridging the GAP between insulin signaling and GLUT4 trafficking. Trends in Biochem Sci. 31:215-22.

Watson, R.T., Saltiel, A.R., Pessin J.E., Kanzaki, M. (2005). Subcellular compartmentalization of insulin signaling processes and GLUT4 trafficking events. In: Mechanisms of Insulin Action, Edited by Drs. Alan Saltiel and Jeffrey Pessin. Eurekah Bisocience 1:602-612.

Watson, R.T., Kanzaki, M., Pessin, J.E. (2004). Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes.Endocr Rev. 25:177-204.

Watson, R.T. and Pessin, J.E. (2001) Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp Cell Res 271:75-83.

Watson, RT and Pessin JE. (2001) Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res. 56:175.

Basic Science Tower, 8th floor, Room 130
robert.watson@stonybrook.edu

631-444-1574